Force and Motion Characteristics of Contamination Particles near the High Voltage End of UHVDC Insulator
نویسندگان
چکیده
It is important to reveal the relations of physical factors to deposition of contaminants on insulator. In this paper, the simulation model of high voltage end of insulator was established to study the force and motion characteristics of particles affected by electric force and airflow drag force near the ultra-high voltage direct current (UHVDC) insulator. By finite element method, the electric field was set specially to be similar to the one near practical insulator, the steady fluid field was simulated. The electric force and air drag force were loaded on the uniformly charged particles. The characteristics of the two forces on particles, the relationship between quantity of electric charge on particles and probability of particles contacting the insulator were analyzed. It was found that, near the sheds, airflow drag force on particles is significantly greater than electric force with less electric charge. As the charge multiplies, electric force increases linearly, airflow drag force grows more slowly. There is a trend that the magnitude of electric force and drag force is going to similar. Meanwhile, the probability of particles contacting the insulator is increased too. However, at a certain level of charge which has different value with different airflow velocity, the contact probability has extremum here. After exceeding the value, as the charge increasing, the contact probability decreases gradually.
منابع مشابه
Impact of Pollution Location on Time and Frequency Characteristics of Leakage Current of Porcelain Insulator String under Different Humidity and Contamination Severity
One of the important factors influencing outdoor insulators performance is pollution phenomenon. The pollution, especially during humidity condition, reduces superficial resistance of insulator and lead to a flow of Leakage Currents (LC) on the insulator surface, which may result in total flashover. The LC characteristics are affected by parameters such as nature and severity of pollution. Loca...
متن کاملCan the History Force be Neglected for the Motion of Particles at High Subcritical Reynolds Number Range?
In the present work, the motion of metallic and plastic particles of 5 mm diameter falling in a quiescent fluid is investigated experimentally. The goal of this investigation is to examine the effect of history force acting on a particle in a range of Reynolds numbers between 1000 and 5000. The instantaneous position of the particle was recorded using a high - speed camera (500 to 1000 frames p...
متن کاملOverview of Direct Numerical Simulation of Particle Entrainment in Turbulent Flows
An overview of removal and re-entrainment of particles in turbulent flows is presented. The procedure for the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method for simulating the instantaneous fluid velocity field is described. Particle removal mechanisms in turbulent flows in a duct are examined and effects of the near-wall coherent eddies on the parti...
متن کاملA Numerical Study on Agglomeration in High Temperature Fluidized beds
Soft-sphere discrete element method (DEM) and Navier-Stokes equations were coupled with equations of energy for gas and solids to investigate the process of agglomeration in fluidized bed of polyethylene particles at high temperature. The Newton’s second law of motion was adapted for translational and rotational motion of particles and agglomerates. The cohesive force for polyethylene particles...
متن کاملA Novel SOI MESFET by Implanted N Layer (INL-SOI) for High Performance Applications
This paper introduces a novel silicon-on-insulator (SOI) metal–semiconductor field-effect transistor (MESFET) with an implanted N layer (INL-SOI MESFET) to improve the DC and radio frequency characteristics. The DC and radio frequency characteristics of the proposed structure are analyzed by the 2-D ATLAS simulator and compared with a conventional SOI MESFET (C-SOI MESFET). The simulated result...
متن کامل